
HYDRODYNAMIC REGIMES OF A LIQUID IN A SMOOTH-WALLED 

ROTATING HEAT PIPE. 1 

M. G. Semena and Yu. A. Khmel~v UDC 532.542 

The article presents the results of the analytical and experimental investigation 
of the hydrodynamics of a liquid in a horizontal rotating heat pipe. A formula 
is derived for determining the thickness of the layer of liquid entrained from 
the groove of the inner cylindrical surface. 

Heat exchange in smooth-walled rotating heat pipes (RHP) has a number of special features 
compared with the heat exchange in fixed natural-circulation pipes, chiefly on account of the 
effect of the rotational speed on the distribution of the layer of liquid on the inner surface 
of the RHP. By determining the nature of the distribution and of the flow of liquid in the 
inner cavity of the RHP, we can explain the phenomenon of hysteresis of the heat transfer co- 
efficient in the zone of the condensation [i], the complex nature of the dependence of the 
heat transfer coefficient in the zone of evaporation [2] and of the heat-transferring ability 
of the RHP on the rotational speed [3]. Up to the present, practically no detailed study has 
been carried out of the distribution of the heat carrier in an RHP for a broad range of ro- 
tational speeds. The attempt at visual investigation [4] is of a partial nature. 

The aim of the present work is to study the hydrodynamics of a liquid in an RHP in de- 
pendence on the rotational speed, the geometric characteristics of the pipe, the physical 
properties of the heat carrier, and its quantity. The object of investigation is a cylindri- 
cal RHP, situated horizontally and rotating with constant angular velocity ~ about the longi- 
tudinal axis. The angle ~ is measured anticlockwise from the upper generatrix. On condition 
that the volume V filled with liquid is uniformly distributed, a layer forms on the inner 
surface of the RHP whose thickness is 3, and ~/R<<I. 

The equation of continuity and of Conservation of momentum in cylindrical coordinates in 
the approximation of the boundary layer, written with a view to the new variable s = R--r, has 
the form 

1 Ov~ Ov~ - O, (1 )  
R--8  O~ & 

1 3v~ [ Ozv~ l Ov,~ v~ ] 
9 ( R  ~) v,; - ~, 

- -  O~ 08 z R - -  ~ O~ (R - -  s) z - -  g sin % ( 2 )  

The results of the numerical solution of Eqs. (i) and (2), carried out by using various meth- 
ods [5, 6], agrees well with the experimental data obtained by us. In generalized form they 
may be presented in the form of the graph shown in Fig. I, which illustrates the existing 
flow regimes in dependence on the rotational speed, the radius of the inner surface, the vis- 
cosity of the liquid and its amount. The experimental investigation was carried out with an 
installation that was additionally equipped with a device for measuring the thickness of the 
layer of liquid by the method of electric contact. To make the flow visible, one of the end 
faces of the stainless steel pipe (Din = 64 mm, I = 300 mm) was made of glass. The working 
liquid was water and methyl alcohol. 

The position of the free surface of the liquid in an RHP depends on the flow regime and 
is determined by the angular coordinate of the maximum thickness of the layer ~m and the 
ratio ~ = dm~. There exist two limit flow regimes: the region of "rotation of a solid" and 
and the region of the "entrained thin layer." Between them there are two transitional re- 
gimes: the regions of viscous flow and of inertia flow. 
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Fig. i. System of coordinates and 
nomograph of flow regimes of a 
liquid: I) region of "rotation of 
a solid"; II) region of "entrained 
thin layer"; III) region of viscous 
flow; IV) region of inertia flow; 
i) water; 2) methyl alcohol; 3) nu- 
merical calculation [5]; 4) present 
work; A (3)) Fr c = 2.2Re~ B (4))j 
Fr c = 2.2Re~ C (5)) Fr c = 
2.2Re ~ Fr c = ~2R/g; Re = ~(~)2/~. 

The region of rotation of a solid I is situated in the left-hand upper corner of the 
graph. In this region the liquid is distributed practically uniformly over the surface 
(~ = i) and moves with constant speed v$~ mR. This regime applies when, with low Frc num- 
bers, the liquid is sufficiently viscous or its quantity is small, i.e., the Re number is 
small, or when with high Re numbers, the Fr c number is also high. In the former case the 
viscous forces predominate throughout the thickness of the layer of liquid ~, in the latter 
case only in the boundary layer 6boun<<~ next to the wall, the thickness of the boundary 
layer decreasing with increasing rotational speed. On the motion of the liquid outside the 
boundary layer, vibrations due to the force of gravity are superimposed, the amplitude of the 
vibrations tending to zero with increasing Fr c, 

The region of the entrained thin layer II, situated in the right-hand lower corner of 
the graph, is characterized by the existence of a groove in the lower part of the RHP and of 
a thin layer of liquid on the remaining surface, and it is encountered when the Frc numbers 
are small or the Re numbers are large (low viscosity of the liquid or a large amount of it). 
In these cases neither the viscous nor the inertial forces are able to ensure distribution of 
the liquid without some rest in the form of a groove. That most of the surface is covered by 
a film is due to the entrainment of the liquid from the groove by the wall. 

The region of viscous flow III is situated in the left-hand lower corner of the graph, 
where the Fr c and Re numbers are small, i.e., the viscous and gravitational forces predominate 
over the forces of inertia. Here the viscosity effect spreads across the entire thickness of 
the layer of liquid, independently of the magnitude of Fr c, The speed of the liquid, running 
down under the effect of the force of gravity, is commensurable with the linear velocity of 
the wall. The mean speed of the flow on the descending part of the pipe is higher than on 
the rising part, therefore the layer is thicker on the latter side (~> i). The maximum value 
of ~ corresponds to the instant when the speed of the free surface at the point ~ = ~/2 is 
close to zero. The angular coordinate of the maximum thickness of the layer ~m in this re- 
gime remains practically constant and equal to ~ = 7/2. 

The region of inertia flow IV is situated in the right-hand upper corner of the graph 
and is characterized by relatively high Fr c and Re numbers. Here the viscous forces have an 
effect only in a thin boundary layer near the wall. This is encountered when the liquid has 
low viscosity or when its amount is large. The flow velocity of the free surface varies with 
a period of 27 relative to the mean value that is approximately equal to mR, and it attains 
its maximum in the lower part of the pipe, its minimum in the upper part. Thus, in the upper 
part of the RHP the layer of liquid is thicker (6 > i) than in the lower part. The angular 
position of 6 m is close to ~ = 0. 
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In transition from region IV to region III, the angular position of the magnitude of dm 
changes from ~ = 0 to ~ = ~/2, and in transition from region I to region II, the magnitude 
of ~ increases from ~ = 1 to ~max" The point characterizing the flow regime in the RHP moves 
along the straight lines which in the graph are indicated by dashed lines. The given slope 
of these straight lines is due to the fact that the Reynolds number is a function of m, and 
the centrifugal Froude number is a function of = Thus, when the rotational speed changes 
(shift along the above-mentioned lines), both ~ and the angular coordinate~m change. 

Experimental investigation also showed that there is some hysteresis of the process of 
transition from region II to region IV for numbers Re> i. The hysteresis is due to the fact 
that upon emergence of the flow regime from region II by increasing the rotational speed up 
to w~ er (Fig. I) the process of entrainment of the liquid by the wall does not yet ensure its 
distribution over the linear surface without some rest in the lower part of the pipe. The 
groove prevents laminar flow of the layer of liquid with the maximum speed of the free sur- 
face in the lower part of the pipe, i.e., it prevents the regime of inertia flow; if this 
groove is to disappear completely, the speed must be increased to some values ~er In the 
opposite transition from regien IV to region II by reducing the speed, the regime of inertia 
flow is maintained up to the speed ~er 

Generalizing the experimental data and the results of numerical calculation, we can de- 
termine quantitatively the boundaries of the existing flow regimes. For region III (Re< i) 
the boundary of the transition to region II (the straight line A in Fig. i) is approximated 
by the equation 

Frc = 2 .2Re  ~  (3 )  

F o r  r e g i o n  IV ( R e >  1 ) ,  t h e  u p p e r  ( s t r a i g h t  l i n e  B) and  l o w e r  ( s t r a i g h t  l i n e  C) b o u n d a r i e s  o f  
the transition to region II in the zone of hysteresis are determined, respectively, by the 
equations 

Fro = 2.2 Re ~ *~, (4 )  

Frc  = 2 .2Re  ~ (5)  

E q u a t i o n s  ( 3 ) ,  ( 4 ) ,  a n d  (5 )  a r e  a p p l i c a b l e  to  t h e  r e g i o n :  0 . 0 5 <  Re<  500.  T h e r e  i s  no d i s -  
tinct boundary of transition to region I because with increasing Frc number ~ approaches 
unity monotonically. In Fig. 1 the arbitrary boundary of region I, corresponding to { = 1.01, 
is shovm 

The distribution of the liquid over the inner surface of the RHP, i.e., the function 8 = 
f(~), for the regimes in the regions I, Ill, and IV can be found relatively simply. Thus, for 
region I this function degenerates to the equality ~(~) = ~ = const. For regime Ill it is 
found by integrating the equation of motion in which we neglect the effect of the forces of 
inertia and of surface tension: 

v . . . .  g sin % (6 )  
& z  R--s as  (R--s) z 

and t h e  c o n t i n u i t y  e q u a t i o n  i n  t h e  fo rm 

6 
- -  o~r = i' v~de = const. (7)  

To d e t e r m i n e  t h e  f u n c t i o n  6 = f ( ~ )  i n  r e g i o n  IV,  we may u s e  t h e  m o d e l  o f  [5]  a c c o r d i n g  to  
which the layer of liquid is divided into the near-wall region, in which the layer of liquid 
forms on account of the difference is speed of the principal flow of liquid and of the wall, 
and into the region bounded by the free surface where the change of speed occurs under the 
effect of the gravitational forces. The respective equations of motion for these two regions 
have the form 

av~ o~v~ (8) 
8t &z 

0re = _ g s in  m~. (9) 
0t 
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Fig. 2. The process of 
entrainment of a liquid 
by the inner surface of 
a cylindrical pipe: a) 
zone of entrainment; 
b, c) zones of dynamic 
and static meniscus, re- 
spectively; i) groove; 
2) near-wall annular 
layer of liquid. 

Then the function ~ = f(~) for regime IV is found by integrating Eqs. (8) and (9), and then 
the continuity equation (7) with the corresponding boundary conditions applying. 

The distribution of the liquid over the inner surface of the RHP in region II is de- 
scribed by a more complex function and requires detailed examination. To analyze the proc, 
esses of hydrodynamics in the region, we subdivide the layer of liquid next to the wall, mov- 
ing upwards, into three zones (Fig. 2): i) the zone of entrainment a, situated fairly far 
above the level of liquid in the groove (here the thickness of the layer is practically con- 
stant over the angle ~ because the mean flow velocity is close to the linear velocity of the 
wall); 2) the zone of the dynamic meniscus b, where the meniscus, forming under the effect 
of the forces of surface tension, is deformed by the motion of the wall (the liquid in this 
zone moves much more slowly than in the preceding one, but the change of speed, and conse- 
quently also the change of thickness of the layer, are considerable); 3) the zone of the 
static meniscus c, where the liquid moves at such low speed that this speed may be neglected 
and that it may be assumed that the shape of the free surface is determined solely by the 
forces of surface tension, like in the case of the meniscus of a motionless surface. 

The equation of motion for the second zone (b) and the equation of the static meniscus 
for the third zone (c) have the form: 

l Ou~ 1 OP U,p 
R -- s &p R -- s d~ 

[ O2v~ 1 Ov~ v~ 
--~ Os z R--s & (R--s) z 

- - p g s i n  ~ ,  (I0) 

(7 
- gpH,~.  (ii) 

]?cr 
If we substitute the expression for the radius of curvature in the orthogonal coordinate sys- 
tem into Eq. (ii), we obtain: 

d2z 

dg 2 g ~ R - -  h 

[ (dz~2]a /2  = 1+  \ dYJ aZ �9 (12) 

The boundary conditions for Eq. (12) are: 

dz y=h--R ~ -- oo. 
dg 

(13) 

We write Eq. (12) in the cylindrical coordinate system: 
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6" ( R  - -  6) + 2 (6 ' )  ~ - -  ( R  - -  6) 2 ( R  - -  ~) cos ~ R - -  h 
- -  a 

[(R - -  6) = + (6')21 w2 = a 2 + a 2 (14) 

If we integrate Eq, (12) with the boundary conditions (13), we obtain: 

R c o s ~ - - g ' s i n ~ - - 6 c o s ~  = ( R - - 6 )  2cos 2q~ q_ (R--A)(R--6)cos~ q- ( R - - h )  ~ 

[(R -- 6) ~ q- (6')2] 1/2 2a 2 a ~ 2a ~ 
1. (15)  

We determine the conditions which Eqs. (14) and (15) have to satisfy in the transition re- 
gion to the thin layer of liquid, i.e., in the upper part of the zone of the dynamic meniscus. 
The thickness of the layer here is small, and it tends to some value 60 which we shall call 
the thickness of the entrained layer. The first derivative of the thickness of the layer 
with respect to the angle q0 then tends to zero: 

6 ' : 0  for 6 ~ 6 ~ .  (16)  

From Eq. (15)  we d e t e r m i n e  t h e  v a l u e  o f  cPMat w h i c h  c o n d i t i o n  (16)  i s  s a t i s f i e d ,  and t h i s  we 
s u b s t i t u t e  i n t o  Eq.  ( 1 4 ) ,  We o b t a i n :  

6" = (R -- 6o)=[(,R - -  60) cos %, 4- (R - -  h)] _ (R - -  8o), ( 1 7 )  
a = 

where 

cos % ,  = {a 2 - -  ( R  - -  h ) ( R  - -  60) + 

+ Y I--a=+ (R --/z)(R --6o)1 = - - ( R - -  60)=(u - -  h p +  2a=(R --60) =} {(R - -  60) =}-'. 

Thus, when conditions (16) and (17) are satisfied, the solution of the equation of the static 
meniscus changes into the solution of the equation of the dynamic meniscus. 

In the known solutions of the problem of the entrainment of a liquid from an unbounded 
volume by a moving flat surface a different approach was used in taking into account the 
effect of the forces in Eq. (i0) and in its solution. For instance, the solution in [8] 
taken into account all the forces: of inertia, viscous, gravity, and the change in pressure 
under the effect of the force of surface tension; in the solution [9] the forces of inertia 
are neglected. Analysis and experimental verification of [8] showed that this solution yields 
the best agreement with the experimental data. However, when the capillarity numbers 
Ca< 0.03, the solution of [9] practically coincides with that of [8] and with the experiment. 

Taking it that for the operating conditions of an RHP Ca< 10 -2 , we neglect the effect of 
inertia. Then Eq. (i0) in the approximation of the boundary layer assumes the form 

o as8 T 02% 1 0% % ] 
a ] -- pgsin % (18) 

0 - -  R a Or# 3 ' ,_ 082 R - - s  as ( R - - 8 )  2 

We integrate Eq. (18) with the boundary conditions: 

V w=~oR for g = 0 ,  

O ( % ) = 0 f o r  s--:  & ( 1 9 )  
O~ R --s 

As a result of this and taking into account the condition R ))6, we determine the speed of 
the liquid in the layer: 

v ~ = - - e R +  - -  - - &  �9 ( 2 0 )  
,~R 3 ,a , 2 , 

If we substitute (20) into the continuity equation 

6 

- -~R6o = i" vq:de = con4, 
b 

(21) 

we obtain: 

1239 



c r - 5 ' "  pgsin~ ) 53 
o)RSo ---- eR5 q- PR 3 p 3 

We find the solution of Eq. (22) with the boundary conditions 

5"-+ 5o, 
6 ' - +  0, ~ - + 0 .  
6"-~ 0, 

(22) 

(23) 

We find the sought value of 6o from the condition of joining the soulution of Eq. (22) with 
the solution of Eq. (14) by the method of [9]. The condition of joining is 

]~Sctr I ~  (24) 

where  Rcr,St Rdr a r e  t he  r a d i i  o f  t h e  c u r v a t u r e  o f  t he  s u r f a c e  d e t e r m i n e d  f rom the  e q u a t i o n s  o f  
t h e  s t a t i c  (14) and o f  t he  dynamic  (22) m e n i s c u s ,  r e s p e c t i v e l y .  

I f  we use  the  e x p r e s s i o n  f o r  t he  r a d i u s  o f  c u r v a t u r e  in  t h e  c y l i n d r i c a l  c o o r d i n a t e  s y s -  
tem, Eq, ( 1 7 ) ,  and the  c o n d i t i o n  R >> 6, we o b t a i n  

a z 

Rcos%~-/- ( R - - h )  " ' (25) 

determining the value of RdrI6§ we find the value of 6" from Eq. (22) for 6§ with the For 
aid of the numerical solution, using the "viscous-surface" approach of [9], and taking the 
boundary conditions (23) into account, we have: 

Ca2/3 
6 " =  1.34R ~ -  ---- (26) 

50 

Then, using the expression for the radius of curvature in the cylindrical coordinate 
system, Eq. (26), and the condition R >>6, we find: 

Rdrl6~h = R 2 
Ca2/3 (27) 

1,34R 2 ---- + R 
50 

I f  we s u b s t i t u t e  (25) and (27) i n t o  ( 2 4 ) ,  we o b t a i n  an e x p r e s s i o n  f o r  d e t e r m i n i n g  the  t h i c k -  
n e s s  o f  t he  l a y e r  o f  l i q u i d  e n t r a i n e d  by the  c y l i n d r i c a l  w a l l  i n  d e p e n d e n c e  on t h e  r o t a t i o n a l  
s p e e d ,  t he  r a d i u s  o f  t h e  p i p e ,  t h e  p h y s i c a l  p r o p e r t i e s  o f  t h e  l i q u i d  and i t s  amount ,  d e t e r -  
mined by the  d e p t h  h o f  t he  g r o o v e :  

RCa2/3 
60 = 1.34 / - - ~ - R  (28) 

I'/~"-~-+I 

If we substitute into (28) the conditions characterizing the process of entrainment of a 
liquid by a flat surface (R+ oo, h§ expression (28) assumes the form obtained in [9]. 

Formula (28) makes it possible to determine the thickness of the entrained layer when 
the depth of the groove is constant. Under the conditions in which RHP operate, the depth 
of the groove decreases with increasing rotational speed because with increasing rotational 
speed the thickness of the layer outside the groove also increases whereas the amount of 
liquid in the pipe is constant, i.e., the value of h in (28) is a function of the rotational 
speed, and consequently also of ~o. We write the expression correlating the amount of liquid 
in the annular layer, rotating together with the wall, with the amount of liquid in the 
groove. Taking into account the small value of 60, we assume here that the mean thickness 
of the layer outside the groove is equal to 60: 

V--2~RIS0~ (R- -8o)  2 (2~z --  sin 2%). (29) 
2 

Taking into account the small values of ~Z for RHP, we replace the function of sin 2fpZ in 
(29) by two terms of the Taylor expansion and express the magnitude of h through the angle ~Z: 

h = R (1 - -  cos %] ~- 5o cos ~z, (30) 

where  
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Fig. 3. Comparison of the results of the ex- 
perimental investigation of the thickness of 
the entrained layer with dependence (32): i) 

= 0.25.10 -a m; 2) 0.5.10-a; 3) 1.10-a; 4, 5, 
6) calculation by Eq. (32) for 6 = 0.25.10 -3 , 
0.5.10 -3 , and i.i0 -3 m, respectively. $o, m; 
Ca = ~R~/a. 

3 (V-- 2nR/6o) 
2l (R - -  60) 2 

If we substitute h from (30) into Eq. (28) and change it into dimensionless form, we obtain: 

a / ~_~o ]3/4 
/ Ao h 3/2 1--(l--Ao) cos~' 3~ (i__Ao)e 

Ca : ~-~) 2 A~ + I . (31) 

The numerical solution of Eq. (31) with respect to ko (in the range of change A = 6.10 -2- 
12.10 -2 , A = 0.2.10-=-5'i0 -a, ko = 0-0.2A) is approximated with an accuracy of 2.5% by the 
expression 

-Z Ca0,68 
Ao=2-10 ~ e x p ( l l . S A ) .  (32) 

Thus formula (32) makes it possible to determine the thickness of the layer entrained by the 
inner surface of a cylindrical RHP as a function of the rotational speed, the geometric di- 
mensions of the RHP, of the physical properties of the heat carrier and of its amount. 

Figure 3 presents a comparison of the results of the experimental investigation of the 
thickness of the entrained layer with dependence (32). The working liquid was water. The 
experiments showed that formula (32) describes well the experimental data in the range of ro- 
tational speeds from the minimal speed to the speed at which waves begin to form on the sur- 
face of the groove. 

NOTAT IO N 

r, ~ , polar coordinates; x, y, z, orthogonal coordinates; g, acceleration of gravity; p, 
density; ~, dynamic viscosity; ~, kinematic viscosity; o, specific surface energy; P, pres- 
sure; a = (o/pg) i/2, Laplace's capillary constant; ve, v~, components of the speed of the 
liquid; ~, angular speed of rotation; ~er, ~er, rotational speeds corresponding, respec- 
tively, to the upper and lower boundaries of the region of hysteresis; R, radius of the inner 
surface; Rcr , radius of curvature of the free surface of the liquid; Rcr ,st R~r, radii of cur- 
vature determined by the equations of static and dynamic menisci, respectively; HM, height of 
rise of the meniscus; h, depth of the groove; l, length of the pipe; V, volume of liquid in 
the pipe; ~ = V/2.v,R.Z, mean thickness of the layer of liquid; ~m, maximum thickness of the 
layer; ~o, thickness of the entrained thin layer; ~ ='~m~m, angular coordinate of the 
maximum thickness of the layer; Fr c = ~=R/g, centrifugal Froude number; Re = m(~)2/~, Rey- 
nolds number; Ca = ~R~/a, capillarity number; A = R/R; Ao = ~o/R; A = a/R. 
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EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN A CENTRIFUGAL 

HEAT PIPE WITH AN OPTIMIZED LAYER OF HEAT-TRANSFER AGEh~ 

B. N. Krivosheev, M. P. Kukharskii, 
and V. D. Portnov 

UDC 536.248.2 

This paper describes a technique and gives results of experimental investigations 
of special features of heat transfer in the evaporator and condenser sections of 
a centrifugal heat pipe with optimized thickness of the layer of heat transfer 
agent. 

Centrifugal heat pipes of various constructions [i] have found use recently to intensify 
cooling of rotary electric machinery. Internal heat transfer is somewhat higher in conical 
heat pipes than in cylindrical ones. However, it is a considerable technical problem to make 
long conical heat pipes (I/d> 5), especially with mass discharge. One way to intensify the 
heat transfer in cylindrical pipes is to use a condenser section of smaller diameter than 
that of the transfer and evaporator sections [2]. In a pipe of this construction the thick- 
ness of condensate layer increases in a stepwise manner towards the closed end of this sec- 
tion, and is therefore considerably less than in the simple cylindrical pipe, where it in- 
creases over the whole pipe length. 

Another efficient way to intensify the heat transfer in aheat pipe is a device at the closed 
end of the evaporator section of the annular channel, for pouring away the excess condensate. 
Calculations presented in [3] have shown, for example, that if we fill a cylindrical heat 
pipe with heat-transfer agent for a design angular velocity of 70 rad/sec, and then increase 
the speed to 300 rad/sec, then up to 70% of the condensate is excess, and will lower the heat- 
transfer rate at low heat fluxes. If we provide an annular groove at the closed end of the 
evaporator section, the excess condensate will automatically flow into the groove, the result 
being that for any rotational speed the evaporator section will contain the minimal necessary 
(i.e., optimal) condensate layer. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 43, No. 5, pp. 775-780, November, 
1982. Original article submitted August 28, 1981. 
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